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PROGRAM SUMMARY

Title of program: CONTIN
Catalogue number: AAOB (version 2DP), AAOC (version 2 SP)

Program obtainable from: CPC Program Library, Queen’s Uni-
versity of Belfast, N. Ireland (see application form in this issue)

Computer: VAX 11 /780; Installation: European Molecular Bi-
ology Laboratory (EMBL). The program is intended to be fully
portable. After setting four installation dependent values, it
should run without modification on most systems supporting
1966 ANSI standard Fortran IV. Version 2SP is recommended
for machines (e.g., CRAY or CDC) with Fortran REAL repre-
sentations of at least 60 bits and Version 2DP for all other
machines

Operating system: VMS
Programming language used: Fortran 1V (1966 ANSI standard,
except for 1 in the rightmost DIMENSION specification of

some dummy arrays)

High speed storage required: about 200 kbytes (depending on
the size of the problem)

No. of bits in a byte: 8

QOverlay structure: none

No. of cards in combined program and test deck: 5822

Card punching code: EBCDIC

Keywords: regularization, inéquality constraints, ill-posed, in-
verse problems, integral equations, quadratic programming,
deconvolution, information content, superresolution, photon

correlation, constrained least squares

Nature of the physical problem
Many experiments are indirect in that the observed data are

linear integral (or matrix) transforms of the quantities to be
estimated. These transforms typically arise because of the
imperfect impulse response of the detection system or because
of the indirect nature of the experiment itself (as with Fourier
transforms in diffraction and Laplace transforms in relaxation
experiments). The inversion of these linear operator equations
are generally ill-posed problems in that there exists a large
number of possible solutions (with arbitrarily large deviations
from each other) all of which fit the data to within experimen-
tal error. Therefore straightforward inversion procedures can-
not be used and statistical regularization techniques are neces-
sary.

Method of solution

A general purpose constrained regularization method [1] finds
the simplest (most parsimonious) solution that is consistent
with prior knowledge and the experimental data. The problem
is formulated as a weighted least squares problem with an
added quadratic form, the regularizor, which imposes parsimony
(typically smoothness) or statistical prior knowledge. Numeri-
cally stable orthogonal decomposition and quadratic program-
ming algorithms {2] are used to obtain the unique global
solution subject to any linear equality or inequality constraints
imposed by prior knowledge (e.g., nonnegativity). The regulari-
zation parameter can be automatically chosen on the basis of
an F-test and confidence regions.

Restrictions on the complexity of the problem

Part of the computation time is proportional to the cube of the
number of parameters used to represent the solution. Compu-
tations with no more than about 100 parameters can be done
economically. This is usually more than adequate for solutions
in one dimension, but not for two- or three-dimensional solu-
tions.

Typical running time

Execution times depend on the complexity of the solution,
constraints and operator. The test data sets in this paper each
took about 180 s on the VAX 11/780. When least squares
weights do not have to be calculated from a fit to the data, the
time is reduced by a factor of two.
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Unusual features of the program

CONTIN has been designed to be easily adaptable to a wide
variety of problems, but still easy to use. It consists of a fixed
core of 53 subprograms plus 13 simple and thoroughly docu-
mented “USER” subprograms that define nearly all aspects of
the problem. These USER subprograms usually do not have to
be changed, but they can be easily modified to define non-
standard integral equations, data preprocessing, simulations,
constraints, regularizors, statistical weighting, output, etc.

LONG WRITE-UP
1. Introduction

CONTIN implements the constrained regulari-
zation algorithm described in detail in ref. [1]. (In
general the notation and terminology of ref. [1]
will be used in this paper without redefinition.)
CONTIN is a general purpose package for the
automatic inversion of noisy linear algebraic and
integral equations, egs. (1.2) and (3.2) of ref. [1],
subject to the optional linear equality and inequal-
ity constraints in eqs. (3.6) and (3.7) of ref. [1].
CONTIN has been designed so that the user can
easily adapt it to his particular problem. This
paper outlines the structure, usage and testing of
CONTIN.

2. Structure of the code

Table 1 lists the 66 subprograms in CONTIN.
A complete block diagram showing the calling
dependencies of the subprograms is given in ref.
[2].

All COMMON variables are in four COM-
MON blocks, DBLOCK, SBLOCK, IBLOCK and
LBLOCK, containing variables of type DOUBLE
PRECISION (REAL in version 2SP), REAL, IN-
TEGER and LOGICAL, respectively. These con-
tain all the control variables (listed in table 4) plus
a few others (listed in table2). The four COM-
MON blocks always appear together in a subpro-
gram and the variable lists are always the same. In
general, the values are set at the beginning and are
not changed during the analysis of a data set.

References

[1] S.W. Provencher, Comput. Phys. Commun. 27 (1982) 213.

[2] C.L. Lawson and R.J. Hanson, Solving Least Squares Prob-
lems (Prentice-Hall, Englewood Cliffs, 1974).

Table 1
CONTIN subprograms

Name Purpose

Initialization and input

BLOCK DATA Initializes control variables

INIT Initializes other variables, computes rela-
tive machine precision

INPUT Reads all input data for one data set

STORIN Checks and stores control variables

READYT Reads y,, 1, and W,

USERIN Preprocesses input data
Problem setup

SETGRD Sets up grid of A,, values in eq. (3.1) of
ref. [1]

USERGR Sets up special-purpose grid of A, values

CQTRAP Sets ¢, values for trapezoidal rule in eq.
(3.1) of ref. [1]

USERTR Defines A(A) for A-grid (see section 4.2 of
ref. [1])

USERSI Computes simulated noisy y, values

USEREX Delivers noise-free simulated y, to
USERSI

RGAUSS Computes pseudorandom normal deviates

RANDOM Computes uniformly distributed pseudo-
random deviates

USERSX Computes extra curve to be plotted with
the solution

USERNQ Sets up inequality constraints in eq. (3.6)
of ref. [1]

SETNNG Sets up nonnegativity constraints in eq.
(3.6) of ref. [1]

SETWT Computes W, in section 4.4 of ref. [1]

USERWT Computes special-purpose W, for SETWT

SETREG Sets up R and r in eq. (3.10) of ref. [1]

USERRG Delivers special-purpose R and r to
SETREG

USEREQ Sets up E and e in eq. (3.7) of ref. [1]

SETSGN Sets up monotonic regions (see section 4.7
of ref. [1])

ANALYZ Controls complete series of solutions in

the appendix of ref. [1]
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Name Purpose
Preliminary computations

SETSCA Sets up internal scaling of variables

SEQACC Does sequential accumulation of 4 to C
in eq. (A.1) of ref. [1]

GETROW Delivers one row of 4 in eq. (3.2) of ref.
[

USERK Computes F,(A,,) in eq. (3.1) of ref. [1]

USERLF Computes L,; in eq. (3.1) of ref. [1]

H12 Performs a Householder transformation
(6]

ELIMEQ Computes K and x; in egs. (A.2) and
(A.4) of ref. [1]

LH1405 Computes 7-CKx, in eq. (A.5) of ref. [1]

SVDRS2 Does a singular value decomposition of a
matrix [6]

QRBD Does a singular value decomposition of a
bidiagonal matrix [6]

Gl Constructs a Givens rotation matrix [6]

G2 Applies a Givens rotation matrix [6]

DIFF Delivers the difference of two numbers

DIAREG Computes CK, ZH; ! and K, ZH; ! in eq.
(A.13) of ref. [1]

DIAGA Computes vy and K, ZH, 'W in egs. (A.19)
and (A.29) of ref. [1]

SETGAL Computes DK, ZH; 'W in eq. (A.28) of
ref. [1]
Core computations

SETVAL Computes §;' and Kx, + K,ZH;'
X[WS ™%+ r,] in egs. (A.22) and (A.29)
of ref. [1]

LDPETC Controls the solution of egs. (A.27) and
(A.28) of ref. {1] and its output

LDP Solves the least distance programming
problem [6]

NNLS Solves the nonnegative least squares prob-
lem [6}

CVNEQ Computes error estimates and Npg in sec-
tions 3.5 and A.2 of ref. [1]

GETYLY Computes the weighted residuals of the fit
to the data

FISHNI Computes the Fisher F-distribution for
noninteger degrees of freedom

BETAIN Computes the incomplete beta function

GAMLN Computes the logarithm of the gamma
function

MOMENT Computes the moments of the solution

RUNRES Controls the plots of the weighted residu-
als and the fit to the data

GETPRU Performs autocorrelation and runs tests
on the weighted residuals

PGAUSS Computes the normal probability integral

ANPEAK Controls peak-constrained solutions

Name Purpose

UPDSGN Updates inequality constraints for peak-
constrained solutions

UPDDON Skips combinations of monotonic regions
that have already been analyzed

FFLAT .TRUE. if peak-constraints have artifi-
cially imposed a flat plateau

UPDLLS Updates boundaries of monotonic regions
Output

WRITIN Outputs control variables

WRITYT Outputs y,, t; and W, arrays

PLPRIN Plots a solution or a fit to the data

USEROU Does special-purpose output

MOMOUT Outputs the moments of a solution

PLRES Plots the weighted residuals

ERRMES Outputs error messages

Table 2

COMMON variables that are not control variables

COMMON Name Purpose
block (DIMENSION
spec.)
DBLOCK PRECIS Approx. 10X (relative
machine precision)
RANGE A very large number (see
section 3.1)
SBLOCK SRANGE A very large number (see
section 3.1)
EXMAX ALOG(SRANGE)
IBLOCK IAPACK(6) Program version name
(see section 3.2)
ITITLE(80) Title in card 1 (see sec-
tion 3.3)
NGL N, in eq. (3.3) of ref.
(1
NGLPI NGL+1
NIN Input unit device num-
ber
NINEQ Nineq In €q. (3.6) of ref.
[}
NOUT Output unit device num-
ber
NY N, in eq. (1.1) of ref. [1]
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3. Instructions for the user
3.1. Necessary changes

Every attempt was made to adhere to 1966
ANSI standard Fortran IV, with the common
exception that some dummy arrays have a 1 in
their rightmost DIMENSION specification. It is
therefore intended that CONTIN will run without
modification on most machines after the following
four installation dependent variables have been set
in BLOCK DATA.

RANGE should be a few orders of magnitude
smaller than BIG, where BIG is the largest
number such that BIG does not overflow and
1/BIG does not cause an underflow. RANGE
and BIG are DOUBLE PRECISION in version
2DP and REAL in version 2SP.

SRANGE is the same as RANGE except that
SRANGE (and BIG) is REAL in both version
2DP and 2SP. The default values for RANGE
and SRANGE are 10%,

NIN is the input device unit number (default = 5).

NOUT is the output device number (default = 6).

In many parts of CONTIN, floating underflows
are expected to occur and be replaced by zero.
With a few compilers it may be necessary to set a
switch or call a subprogram to suppress underflow
diagnostics. With some systems, input and output
files may have to be opened with control cards or
in the main subprogram (at places indicated with
COMMENT cards).

3.2. Problem-dependent changes

The DIMENSION specifications of the large
arrays need only be set in the main subprogram,
which passes them along as dummy arguments to
the rest of the subprograms. Therefore the arrays
can be easily expanded to handle larger problems
or reduced to save high speed storage, as explained
in detail in the COMMENT cards and in ref. [2].
In BLOCK DATA the default values of the con-
trol variables can be reset to commonly used val-
ues to avoid having to input them for every run
(see section 3.3).

Most important, the USER subprograms can be

easily modified to redefine nearly every aspect of
the particular problem being solved. They are out-
lined in section 4 of ref. [1] and section 4 of this
paper and fully documented in ref. [2] and in their
COMMENT cards. The array IAPACK contains a
six-character name that is output as part of the
heading. [APACK can be reset in BLOCK DATA
to uniquely identify a modified version of CON-
TIN.

3.3. Input data

Table 3 shows the structure of a data set. As
explained in section 4.1 of ref. [1], several data sets
can be placed in succession in an input deck for
analysis in one run. An example of this is given in
the test run input at the end of this paper. Card 1
contains a title, which then appears in various
headings in the output.

Card set 2 is only necessary if some of the
control variables are to be changed from their
default values, which are initially set in BLOCK
DATA. During a run, the values of the control
variables are preserved from the analysis of one
data set to the next. They can be reset with card
set 2. Table4 lists all the control variables. Their
usage is outlined in section 4 of ref. [1] and de-
scribed in detail in ref. [2]. Most control variables
are input with one card, with FORMAT

(1X, 6A1,15, E15.6). (1)

The 6A1 field contains the control variable
name, left justified and filled with blanks. The I35
field contains the single subscript of the control
variable, if it has one. The E15.6 field specifies the
value. If the control variable is of type INTEGER,
then the value (converted to REAL) must be in the
E15.6 field. For LOGICAL control variables, only
the values 1.0 (for .TRUE.) and —1.0 (for
.FALSE)) are allowed. Seven control variables must
be input with two successive cards. The first card
has the same FORMAT as (1), but only the 6Al
field is used (for the name). The FORMAT speci-
fication for the second card is given in table 4.

Card 3 has the FORMAT in (1), but only the
6A1 field is used, with the characters ‘END’, left
justified and filled with blanks.

Card set 4 provides a convenient way of speci-
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Table 3
Composition of an input data set

Card FORMAT Input variables Necessary when

1 80A1 ITITLE(K), K=1, 80 always
set 2 (see section 3.3) Control variables never

3 1X,6A1 ‘END’ card always
set 4 1X,6A1,I5,2E15.6 ‘NSTEND?’, NT, TSTART, TEND (NINTT cards) NINTT>0

Sa 1X,6A1,15 ‘NY’,NY NINTT=0
set  5b IFORMT T(K),K=1,NY NINTT=0
set 6 IFORMY Y(K),K=1NY SIMULA = FALSE.
set 7 IFORMW W(K)K=1NY IWT=4
Table 4
Control variables
Name Type FORMAT Default Purpose

(DIMENSION (2nd card) value
spec.)

Input control
LAST L T =T for last test data set
NINTT I 0 No. of equally spaced sets of 7, in eq. (1.4) of ref. [1]
IFORMT 1(70) 1X‘7OA1 (5E15.6) Input FORMAT for the 1, in eq. (1.4) of ref. [1]
IFORMY 1(70) 1%,70A1 (5E15.6) Input FORMAT for the y, in eq. (1.2) of ref. [1]
IFORMW 1(70) 1)('70A1 (5E15.6) Input FORMAT for the W) in section 4.4 of ref. [1]
DOUSIN L T =T to call USERIN (section 4.1 of ref. [1})
User Arrays
RUSER R(100) 100« 0. REAL USER array (see table 5)
TUSER 1(50) (see section 4) INTEGER USER array (see table 5)
LUSER L(30) 30xF LOGICAL USER array (see table 5)
Formation of linear equations
NG I 31 N, in eq. (3.1) of ref. [1]
GMNMX R(2) 0.,0. GMNMX(1)=A,, GMNMX(2)= >‘Ng in eq. (3.1) of ref. [1]
IQUAD I 3 Quadrature method (section 4.2 of ref. [1])
IGRID I 2 A-grid (section 4.2 of ref. [1])
NLINF I 0 N in eq. (3.1) of ref. [1]
Constraints
DOUSNQ L F =T to call USERNQ for inequality constraints
NONNEG L T =T to constrain x, >0, j=1,...,N,, in eq. (3.2) of ref. [1]
NEQ I 0 Ny in eq. (3.7) of ref. [1]
Least-squares weights
IWT I 1 Weighting scheme (section 4.4 of ref. [1])
NERFIT I 10 No. of points used for safety margin [2]
Regularizor (section 4.5 of ref. [1])
NORDER I 2 =0 for order of regularizor, <0 for call to USERRG
NENDZ 1(2) 2,2 No. of external boundary zeroes
a-grids (see ref. [2])
NQPROG 1(2) 6,6 No. of points in a-grids
RSVMNX R(2,2) 4E10.3 1,1.,0.0 Range of a-grids
DFMIN R 2. Min. reasonable N, in eq. (3.15) of ref. [1]
ALPST R(2) 0.,0. >0 to replace grid by the specified a value



234 S.W. Provencher / General purpose constrained regularization program

Table 4 (continued)

Name Type FORMAT Default Purpose
(DIMENSION (2nd card) value
spec.)
Miscellaneous
SIMULA L F =T to simulate data (section 4.6 of ref. [1])
TUNIT 1 -1 >0 to specify device no. for scratch file
ICRIT 1(2) 1,1 Criterion for choosing o [2]
PLEVEL R(2,2) 4F5.2 4x0.5 Probability level for choosing « 2]
Peak constraints (see ref. {2])
NNSGN 1(2) 0,0 No. of peak-constrained analyses
NSGN 1(4) 440 No. of monotonic regions
LSIGN 1(4,4) 1615 160 Starting locations of monotonic regions
NFLAT 1(4,2) 815 8x0 No. of attempts to eliminate plateaus
SRMIN R 0.01 Relative threshold for defining plateaus
MQPITR I 35 Max. iterations for a peak-constrained analysis
Output control
LINEPG I 60 Lines per page of printed output
NEWPGI L F =T to start new page at the start of a run
MIOERR I 5 Abort after MIOERR input diagnostics
PRY L T =T to output y, and 7, in eq. (1.4) of ref. [1]
PRWT L T =T to output the computed W, in section 4.4 of ref. [1]
IPRINT 1(2) 4.4 Frequency and spacing of the output of the solutions
ONLY! L T = F to plot a second curve, computed in USERSX, with the
solution
IPLRES 1(2) 2,2 Frequency of plots of the weighted residuals [2]
IPLFIT 12) 2,2 Frequency of plots of the fit to the data [2]
IUSROU 1(2) 0,0 Frequency of calls to USEROU for special-purpose output
DOMOM L T =T to output moments of the solution
MOMNMX  1(2) -1,3 Min. and max. degrees of moments
MPKMOM I 5 Max. no. of peaks for which moments are computed
DOCHOS L T =T to print solution chosen by eq. (3.24) of ref. [1] once

again at end

fying NINTT groups of equally spaced 1, by set-
ting the control variable NINTT >0. Each card
contains the characters ‘NSTEND’ in columns 2-7
and NT, TSTART, TEND as specified in table 3.
For each card, NT equally spaced values of 7,
from TSTART to TEND are computed.

Card 5a and card set 5b are used when NINTT
< 0 to read in the ¢, directly. The 6A1 field in card
5a must contain the characters ‘NY’, left justified
and filled with blanks. NY = N, and T(K) =7, in
egs. (1.1) and (1.4) of ref. [1].

Card set 6 contains the Y(K) =y, in eq. (1.1) of
ref. [1]. Card set 7 contains the W(K)= W, in
section 4.4 of ref. [1]. The relative positions of
possible input to USER subprograms is given in
ref. [2].

4. USER subprograms

Table 5 lists all the USER array elements that
are used in the default versions of the USER
subprograms. These subprograms can be easily
modified for a wide variety of applications. How-
ever, in doing so, care should be taken not to use
the same USER array element for more than one
purpose. The default values of all elements of
IUSER are zero except for IUSER(10)=2 and
IUSER(18) = 50. The default versions of USERIN,
USERK, USERSI, USEREX and USERWT il-
lustrate applications to the inversion of photon
correlation spectroscopy (PCS) and Laplace trans-
form data. In this section we outline their use. Full
details are given in ref. [2] and the test data in this
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Table 5
Default usage of USER arrays
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Array Subscript Subprogram Purpose
RUSER 1 USEREQ s(A)
2 USEREQ s(A ~,)
3 USERSI Sets noise level
6 USEREQ Integral of s(A)
8 USERSX ARs e 72 /T(Rg+1) is plotted
10 USERIN Background (section 4.2)
14 USEREX Storage for normalization constant
15 USERIN Refractive index
16 USERIN Wavelength (in nm) (section 4.2)
17 USERIN Scattering angle (in degrees)
18 USERIN Proportionality constant or absolute temperature (section 4.2)
19 USERIN Viscosity (in centipoise)
20 USERIN Storage for magnitude of scattering vector (section 4.2)
21-23 USERK See eq. (2) and section 4.2
24 USERK Wall thickness (in cm) of hollow spheres (section 4.1)
25,27,...,39 USEREX Positions of 8-functions
26,28,...,40 USEREX Integrated amplitudes of d-functions
41,42,...,50 USEREX Simulated B, in eq. (3.1) of ref. {1]
51,52,...,50+ Ng USERK Storage for form factors
IUSER 1 USERRG Starting location of regularizor in RUSER [2]
2 USERLF No. of data points preceding second data set [2]
3 USERSI Starting integer for pseudorandom generator
10 USERK Selects form of kernel (section 4.2)
11 USEREX No. of simulated 3-functions
18 USERK Form factor averaged over 21,4, points (section 4.1)
LUSER 1 USERRG Internal flag
3 USERK =T to use form factors (section 4.1)
4 USERK Internal flag

paper provides examples of their use. We ab-
breviate USER array elements such as RUSER(23)
and IUSER(10) by R,; and I, etc.

USERK evaluates kernels of the general form

)

which includes Laplace transforms. R,, and R,
must be nonzero. The form factors, f,, are de-
scribed in section 4.1. Convenient options for au-
tomatically computing R,, for PCS are described
in section 4.2.

F(N,., 1) :fmZAIEnZBexp(_R2ltkA1§n22)9

4.1. Form factors

If L, = FALSE.,, then all the f,, = 1. Otherwise,
the £, are the quafeé{Rayleigh—Debye form fac-

tors for hollow spheres [3], where R,, is the wall
thickness in cm. However, R,, <0 will cause the
form factors for solid spheres to be computed. An
I, >0 causes the squared form factor to be aver-
aged over 21,;+ 1 equally spaced points on the
interval centred at the grid point and extending
halfway to its nearest neighbors. This is necessary
if the form factors rapidly oscillate. The default
value of I, = 50 is recommended.

4.2. Data preprocessing in USERIN

The default value of DOUSIN = . TRUE., which
causes USERIN to be called, is necessary. A non-
zero R, can be used to convert the y, input in
card set 6 to the PCS normalized first-order corre-
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lation function. If R,,>0, then the y, will be
replaced by +(y,/R;,,— 1)!/?, as appropriate
when the second-order correlation function (with
background R,,) is input. When R, <0, the input
y, will be replaced by +y,/?, as appropriate when
the normalized second-order correlation function
minus 1.0 is input. In both cases if x, the argument
in the square root, is negative, then —(—x)"/? is
used (rather than zero) to avoid bias toward posi-
tive noise components. If R,, =0, then the y, are
not changed. When IWT =5, USERWT computes
statistical weights for the normalized first-order
correlation function assuming the second-order
correlation function follows Poisson statistics.

When R, R, and R, are input as specified in
table 5, the magnitude of the scattering vector (in
cm ') is automatically stored in

Ry = (4 X 107”7R15/R16) sin(R;7/2). (3)

If R,,=0, then R, is not computed and R, in
eq. (2) is set to 1.0, as appropriate for Laplace
transforms.

I,, provides convenient options for automati-
cally setting R,,, R,, and R,; in eq. (2). When
I,,=1, CONTIN sets R,; =1 and R,, =R 3R3.
This is appropriate when s(A) is a weight fraction
molecular weight distribution and R4 and R ,, are
input so that the translational diffusion coefficient
(in cm?/s), is related to the molecular weight, A,
by

D= R AR7, (4)

When I, = 2, CONTIN sets R,; =0, R, =1 and
R,, = R%,. This is appropriate for Laplace trans-
forms (when R, = 0) or when s(A) is a diffusion
coefficient distribution. When 7,;,=3, CONTIN
sets R,; =3, Ry, = —1 and

RzlszRlstzo/(o-06"TR19)’ (5)

where kj is the Boltzmann constant. This is ap-
propriate when s(A) is a weight fraction radius (in
cm) distribution of spheres satisfying the Ein-
stein—Stokes relation, Rs, Rys, R;; and R, are
input as specified in table 5, and Ry is the abso-
lute temperature. I,, =4 is for the general case
where the user inputs R,,, R,, and R,; in eq. (2).

4.3. Simulation

The default version of USEREX simulates the
case that s(A) is a sum of I;; Dirac é-functions.
This can be very useful in studying the potential
resolving power of an experimental method (see
section 3.7 of ref. [1]). The positions and in-
tegrated amplitudes of the 8-functions are speci-
fied respectively by R, and R, ;, with j=
25,27,...,23+21,,. In addition the sum in eq.
(1.2) of ref. [1] can be simulated by specifying the
B;in R, with j=41,42,...,40 + N,.

In USERSI the noisy data are simulated by
adding pseudorandom normally distributed noise
to the noise-free values, Y,, produced in USEREX.
The standard deviations of the noise components
are R, when IWT=1, R,Y/? when IWT =2,
R,Y, when IWT =3, and R,/ W,/ when IWT =
4. These are consistent with the noise statistics
assumed in specifying IWT in section 4.4 of ref.
[1]. When IWT = 5, USEREX, USERSI, USERIN
and USERWT simulate a second-order PCS corre-
lation function following Poisson statistics,

ve=B[1+v{g(r) +4,)7]. (6)

where B is the background, y and A, are unknown
parameters [4], and g(z,) is the first-order correla-
tion function to be analyzed. The user need only
input R, =B~ /2, R, = yA,, and R,5, Ry, ..., 5O
that USEREX simulates yg(¢, ). This is illustrated
in test data set 2 at the end of this paper.

5. Output and diagnostics

The output includes the input data; the final
values of the control variables; a table of the
minimum and maximum elements of each column
of A in eq. (3.2) of ref. [1] and the corresponding
internal scale factors; p, the internal scale factor
for a; sj/p, the scaled singular values in section
3.5 of ref. [1]; and optional plots of the solutions,
weighted residuals and fits to the data. When
appropriate, there is also optional output of the
least squares weights, the scattering form factors,
or the noise components in the simulated data.

The test run output at the end of this paper
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illustrates the output of the solutions. The first line
contains ITITLE from card 1, table 3. The next
two lines comprise a table, with ALPHA =« /p,
ALPHA /S(1) = a/s,, OBJ. FCTN.= V(«) in eq.
(3.10) of ref. [1]; VARIANCE = V(0) in eq. (3.9)
of ref. [1]; STD. DEV.=4§ in eq. (3.22) of ref. [1],
DEG FREEDOM = N, in eq. (3.15) of ref. [1]
and PROB1 TO REJECT = PROBI(«) in eq. (3.23)
of ref. [1]. PROB2 TO REJECT should be ignored
[2]. Under the heading ORDINATE are printed
(and plotted horizontally) the solution values, i.e.,
the x; in eq. (3.2) of ref. [1] if IQUAD =1 and the
s(A,,) in eq. (3.1) otherwise. The A, are printed
under ABSCISSA and the error estimates (see
section 3.7 of ref. [1]) are printed under ERROR
and shown as error bars with dots above and
below the plotted values of the solution. The LIN-
EAR COEFFICIENTS are the B, in eq. (3.1) of
ref. [1].

The last two pages of the test run output il-
lustrate how the moments are optionally computed
for each peak as well as for the entire curve. The
moments,

m:mmax

M= E cm>\{nxm’ (7)

J

m=nm iy

are a quadrature approximation to

A e
szfA Ms(X) dA (8)

when IQUAD # 1 and eq. (3.1) of ref. [1] 1s used.
The ranges A, and A are given in the table.
The table of ratios, M/M,_,, are useful weighted
averages of A. For example, in the first two pages
of the test run output, s(A) is a weight fraction
molecular weight distribution and the ratios
printed under M(J) /M(J — 1) are respectively the
number-, weight-, z- and (z + 1)-average molecular
weights. In the last two pages, s(A) is a weight
fraction particle radius distribution, and the num-
ber- and weight-average radii are therefore given
by M_,/M_, and M, /M,, respectively. The error
estimates are especially useful because the weaker
scattering and shorter-lived correlations of the
smaller particles makes the accuracy of the esti-
mates very uneven.

The last line on pages 1 and 3 of the test run

output summarizes the results of statistical tests on
the number of runs (PRUNS) and the autocorre-
lation with lags 1,...,5 (PUNCOR) in the residu-
als of the fit to the data [5]. Large values, say
= 0.1, are indications of well scattered residuals,
probably due to random noise only. Small values,
say <0.01, are a warning that there may be sys-
tematic errors or effects not properly accounted
for by the model or that « is too large. The
CHOSEN SOLUTIONS on pages 2 and 4 of the
test run output are simply being output again at
the end of each analysis because their PROB1(a)
was closest to 0.5 (see section 3.6 of ref. [1]). The
corresponding PRUNS and PUNCOR, as well as
plots of the residuals and fits to the data have
already been output previously (not shown).

CONTIN makes extensive tests for error condi-
tions during input and throughout the analysis.
There are more than 50 diagnostic messages in a
standard format uniquely identifying the error and
its location. Explanations and possible remedies
for each error are given in detail elsewhere [2].

6. Testing the code

The test run input shown below contains two
data sets. The first illustrates the estimation of a
molecular weight distribution from real data (of
relatively poor quality). The second illustrates the
estimation of a particle radius distribution from
simulated data corresponding to a mixture of equal
weights of particles of radii 50 and 150 nm. Eight
of the cards in the second data set are unnecessary
since they are the same as in the first data set and
values of control variables are passed from one set
to the next. The cards are included anyway so that
the second data set can be run independently.

CONTIN is meant to be fully portable. How-
ever, the discrete grid of a values used depends on
the relative machine precision, which is automati-
cally computed by CONTIN. This quantity is also
used to make the regularizor full rank. This means
that the CHOSEN SOLUTIONSs on pages 2 and 4
of the test run output will only be machine inde-
pendent to typically one or two times the error
estimates. This can best be checked with the values
of M(J)/M(J — 1). Pages 1 and 3 of the test run
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output correspond to the smallest values of « used,
and since these are practically zero, the solutions
should be nearly machine independent, except for
the values of ALPHA and ALPHA /S(1).
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TEST RUN INPUT

TEST DATA SET 1 (MOLECULAR WEIGHT DISTRIBUTION)

LAST -1.
GMNMX 1 5.E+2
GMNMX 2 5.E+6
INT 5.
NERFIT 0.
NINTT 3.
NLINF 1.
IFORMY
(6F8.6)
DOUSNQ 1.
TUSER 10 1.
RUSER 15 1.43
KUSER 16 488.
RUSER 17 60.
RUSER 18 1.37E-4
RUSER 22 -.5
RUSER 10 -1.
END
NSTEND 17 5.E-6 85.E-6
NSTEND 16 95.E-6 245.E-6
NSTEND 4 265.E-6 325.E-6
.450999 410113 .372522 .340069 .310318 .283569
.258853 .236028 .216811 .199376 .181524 .165491
L 153746 . 139687 128724 117704 , 109878 094114
.080559 .068725 .058679 ,053363 .045275 .039581
.033519 .031586 .027971 .023976 .021711 .021533
.020312 .016487 .017212 .016077 011657 .013386
.010805
TEST RUN OUTPUT
TEST DATA SET 1 (MOLECULAR WEIGHT DISTRIBUTION)
ALPHA ALPHA/S(1) OBJ. FCTN. VARIANCE STD. DEV,
* 2.09E-10 1.86E-16 2.83804E-04 2.83804E-04 2.889E-03
ORDINATE ERROR ABSCISSA
0.000E+00 2.5D-29 5.00E+02X
0.000E+00 9.6D-29 6.80E+02X
0.000E+00 8,6D-29 9.2U4E+02X
0.000E+00 9.3D-29 1.26E+03X
0.000E+00 2.9D-28 1.71E+03X
0.000E+00 2.4D-28 2.32E+03X
0.000E+00 4.3D-28 3.15E+03X
0.000E400 2.7D-28 4,29E+03X
0.000E+00 3.7D-28 5.83E+03X
0.000E+00 3.6D-28 7.92E+03X
0.000E+00 6.7D-28 1.0BE+04X
0.000E+00 1.7D-28 1.46E+04X
0.000E+00 3.5D-28 1.99E+04X
0.000E+00 8.3D-28 2.71E+04X
0.000E+00 3.4D-29 3.68E+04X
0.000E+00 3.5D-28 5.00E+04X
0.000E+00 6.1D-28 6.80E+04X
0.000E+00 5.6D-28 9.24E+04X
0.000E+400 1.1D-27 1.26E+05X
4,263E-11 3.0D-12 1.71E+05
1.005E-11 3.2D-12 2.32E+05 ... Xeviounan
0.000E+00 1.7D-27 3.15E+05X
0.000E+00 5.5D-28 4,29E+05X
0.000E+00 3.6D-28 5.83E+05X
0.000E+00 1.2D-27 7.92E+05X
0.000E+00 6.9D-28 1.08E+06X
0.000E+00 7.0D-28 1.46E+06X
0.000E+00 1.9D-28 1.99E+06X
0.000E+00 5.6D-28 2.71E+06X
0.000E+00 1.2D-28 3.68E+06X
0.000E+00 1,5D-29 5.00E+06X
LINEAR COEFFICIENTS = 8.5963E-02 +- 1.7D-03
PEAK 1 GOES FROM 5.000E+02 TO 5.000E+06 J MOMENT (J ) PERCENT
-1 1.9509 X {(10%** -11)
0 3.4570 X (10%* -5)
1 6.1951 X (10%* -1)
2 1.1257 X (10** 5)
3 2.0797 X (10%* 10)
(FOR ALPHA/S(1) = 1.8b6E-16) PRUNS = 0.5018 PUNCOR = 0.1876 0.7394

0.

2
1
2.
2
i

TEST DATA SET 2 (SIMULATED RADIUS DISTRIBUTION)

LAST
IWT
NERFIT
NINTT
NLINF
DOUSNQ
IUSER
MOMNMX
RUSER
RUSER
RUSER
RUSER
RUSER
SIMULA
LUSER
1USER
1USER
RUSER
RUSER
RUSER
RUSER
RUSER
RUSER
GMNMX
GMNMX
END
NSTEND

DEG FREEDOM

3.000

ERROR

.8E+00
.BE+00

8E-01

.0E+00
. 3E+00

PROB1 TO REJECT

W oo O e

-3.

488.
60.
298.
.8937

30171:
.0002
1.5E-5

<5E=5
.35

.035
10.E-7
1000.E-7

§.E-5

704.E-5
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0.000

M(J)/M(J-1)

1
1
1
1

.7720E+05
.T921E+05
.8171E+05
. BUT5E+05

0205 0.8123 0.5931

PROB2 TO REJECT

1.000

PERCENT ERROR

4,4E+00
1.9E+00
2.3E+00
6.3E+00

wn oo
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CONTIN VERSION 2DP (APR 1982) {( PCS-1 PACKAGE) CHOSEN SOLUTION
TEST DATA SET 1 (MOLECULAR WEIGHT DISTRIBUTION)

ALPHA ALPHA/S(1) OBJ. FCTN. VARIANCE STD. DEV. DEG FREEDOM PROB1 TO REJECT PROB2 TO REJECT
1.63E-06 1.31E-12 3.57888E-05 3.31443E-05 9.893E-04 3.137 0.785 1.000

ORDINATE ERROR ABSCISSA

0.000E+00 2.3D-29 5.00E+02X

0.000E+00 3.6D-29 6.80E+02X

0.000E+00 3.1D-29 9.24E+02X

0.000E+00 3.4D-29 1.26E+03X

0.000E+00 2.0D-29 1.T71E+03X

0,000E+00 9.1D-30 2.32E+03X

0.000E+00 2.9D-29 3.15E+03X

0.000E+00 1.7D-29 4.29E+03X

0.000E+00 2.7D-29 5.83E+03X

0.000E+00 3.0D-29 7.92E+03X

0.000E+00 9.4D-29 1,08E+0u4X

0.000E+00 7.8D-29 1,46E+0UX

0.000E+00 3.0D-28 1,99E+Q4X

0.000E+00 1.8D-28 2.71E+04X

0.000E+00 2.3D-28 3.68E+04X

0.000E+00 1.3D-28 5.00E+04X

3.438E-12 1.4D-12 6.80E+04 =  ...... ) ST

1.092E-11 1.7D-12 9.24E+04 . Xivowoonn

1.936E-11 6.2D-13 1.26E+05 ’ S SN

2.2078-11 1.2D-12 1.TIE405

1.417E-11 B.4D-13 2.32E+05 P G

2.5176-12 U4.6D~13 3.15E+05 XL

0.000E+00 9.1D-29 4.29E+05X

0.000E+00 2.2D-28 5.83E+05X

0.000E+00 4.3D-29 7.92E+05X

0.000E+00 1,1D-28 1.08E+06X

0.000E+00 8.2D-29 1.46E+06X

0.000E+00 5.1D~29 1.99E+06X

0.000E+00 5.3D-29 2.71E+06X

0.000E+00 8.6D-30 3.68E+06X

0.000E+00 1.4D-29 5,00E+06X

LINEAR COEFFICIENTS =  7.8725E-02 +- 1.9D-03
PEAK 1 GOES FROM 5.000E+02 TO 5.000E+06 J MOMENT (J) PERCENT ERROR M(J)/M(J-1) PERCENT ERROR J
-1 2.2100 X (10%* -11) 3.1E+00

0 3.4989 X (10%* -p) 1.1E+00 1.5832E+405 4.1E+00 0
1 6.2598 X (10%* _1) 2.8E-01 1.7891E405 1.4E+00 1
2 1.2516 X (10%+  5) 1.8E+00 1.9994E+05 2.0E+00 2
3 2.7622 X (10%% 10) 3.9E+00 2,2070E405 5.7E+00 3



TEST DATA SET 2 (SIMULATED RADIUS DISTRIBUTION)

ALPHA
* 1.35E-10

ORDINATE
.000E+CQ0
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000£+00
.000E+00
.892E+21

.056E+20
.000£+00
,000E+Q0
.0008+00
.000E+00
.000E+00
.521E+20
.B839E+20
.00CE+00
.CO0E+Q0C
.000E+00Q
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.Q00E+00
.000E+00
.000E+00

0000000 OOW—-C0O0CD 220000000000

.000E+00 -
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S.W. Provencher / General purpose constrained regularization program

ALPHA/S(1) OBJ. FCTN.
1.868-16 1.11779E-04
ERROR ABSCISSA
.9D+02  1.00E-06X
.9D+03  1.178-06X
.3D+04  1.36E-06X
.2D+03  1.58E-06X
.0D+04 1.85E-06X
.8D+04  2.15K-06X
.6D+04  2,51E-06X
.6D+04  2.93E-06X
L1D+04  3.41E-06X
.2D+04  3.98E-06X
.3D+21 4.64E-06
.5D+20  5.415-06.
.4D+05  6.31E-06X
.4D+05 7.36E-06X
.6D+04  8.58E-06X
.8D+05 1,00E-05X
.0D+04  1,17E-05X
.6D+19  1,36E-05 X
.6D+19  1.58E-05
.6D+05 1.85E-05X
1D+05 2.15E-05X
.9D+04  2.51E-05X
3D+05 2.93E-05X
.8D+03  3.41E-05X
.2D+04  3.9BE-05X
.3D+04  L4.64E-05X
.5D+04  5.41E-05X
.10+04  6.31E-05X
.2D+04  7.36E-05X
.1D+04 8.5BE-05X
.5D+04 1.00E-04X

LINSAR COEFFICIENTS

PEAK 1 GOES FROM

PEAK 2 GOES FROM

(FOR ALPHA/S(1) = 1.86E-16) PRUNS = 0.2973

MOMENTS OF ENTIRE SOLUTION

3.4824E-02 +- 6.9D-04

1.000E-06 TO

1.359E-05 TO

1.166E-05

1.000E-04

VARIANCE STD. DEV.
1.117T9E-04 1.160E-03
J MOMENT(J)
-3 9.7277 X (10%* 30)
-2 4.5720 X (10%* 25)
-1 2.1529 X (10%* 20)
0 1.0159 X (10%%¢ 15)
1 4.8056 X (10%* g)
2 2.2793 X (10%* 4)
3 1.0843 X (10%% 1)

J MOMENT(J )
-3 3.2492 X (10%% 29)
-2 4.7695 X (10%* 214)
-1 7.0425 X (10%* 19)
0 1.0459 X (10%* 15)
1 1.5622 X (10%* 10)
2 2.3461 X (10%*  5)
3 3.5419 X (10%*% Q)

J MOMENT(J)
-3 1.0053 X (10%* 31)
-2 5.0490 X (10%* 25)
-1 2.8571 X (10%* 20)
0 2.0618 X (10%r 15)
1 2.0428 X (10%* 10)
2 2.5T41 X (10%*  5)
3 3.6504 X (10%*  0)
PUNCOR = 0.0865

DEG FREEDOM

PERCENT

PERCENT

w = o= W

PERCENT

0.2558 0.

5.000

ERROR

3.0E+01
2.4E+01
1.8E+01
1.
Y
7
1

1E+01

LUE+00
.9E+00
LTE+01

ERROR

. 3E+00
.8E+00
.4E+00
.0E+00
.3E-01
.9E+00
. 1E+Q0

ERROR

2.9E+01
2.,2E+01
1.4E+01
5.
1
1
3

5E+00

.2E+00
.BE+00
.1E+00

1253
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PROB1 TO REJECT
0.000

M(J)}/M(J-1)

.7000E-06
.T088E-06
-7189E-06
.73028-06
.T430E-06
-1573E-06

FEEEEE

M(J)/M(J-1)

-4679E-05
L4766E-05
.4852E-05
.4936E-05
.5018E-05
.5097E-05

M(J)/M(J-1)

.0225E-06
.6589E-06
.2165E-06
.90T4E-06
.2601E-05
.4181E-05

P R B!

0.6963 0.9809

PROB2 TO

PERCENT

N = =

PERCENT

VN - W o0

PERCENT

W oy W

REJECT
1.000

ERROR

L4E+01
.2E+01
.9E+01
.5E+01
L2E+01
.5E+01

ERROR

. 1E+00
.2E+00
LHE+00
.HE+00
.5E+00
.0E+00

ERROR

L 1E+01
L6E+01
.9E+01
.6E+00
.QE+00
.9E+00

241
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CONTIN VERSION 2DP (APR 1982) ( PCS-1 PACKAGE) +4+++r++ CHOSEN SOLUTION + R

TEST DATA SET 2 (SIMULATED RADIUS DISTRIBUTION)

ALPHA ALPHA/S(1) OBJ. FCTN. VARIANCE STD. DEV, DEG FREEDOM PROB1 IO REJECT PROB2 TO REJECT
2.58E-05 2.77E-11 4. 15143E-06 4.06515E-06 2.213E-04 4.989 0.349 1.000
ORDINATE Erdun ABSCISSA
0.000E+00 6.8D+02 1.00E-06X
0.000E+00 2.2D+02 1.1TE-06X
0.000E+00 1.10+403 1.36E-06X
0.000E+00 7.1D+02 1.58E~06X
0.000E+00 y,13402 1.85E-06X
1.921E+19 2.0D+19 2,
7.353E+19  4.0D+19 2.
1.553E+20 5.0D+19 2.
2.453E+20 4,6D+19 3.
3.100E+20 3.3D+19 3.
3.169E+20 1.9D+19 4,
2.587E+20 1.6D+19 5.41E-06 ) SR
1.498E+20 2.0D+19 6.31E-06 ) U
4.503E+19 1.7D+19 7.36E-06 ...... Xovonn
0.000E+00 6.3D+03 8.58E-06X
0.000E+00 9.7D+03 1,00E-05X
6,822E+19 6.6D+18 1.17E-05 A
1.488E+20 8.2D+18 1.36E-05 X
1.600E+20 5.5D+18 1.58E-05 X
1.041E+20 7.8D+18 1.85E-05 XL
3.854E+19  1.3D+19 2.15E-05 ..... Xoo
3.435E+18 9.3D+18 2.51E-05.X...
0.000E+00 3.9D+03 2,93E-05X
0.000E+00 2.0D+03 3.41E-05X
0.000E+00 3.4D+03 3.98E-05X
0.000E+00 1.7D+03 4.64E-05X
0.000E+00 2.1D+03 5.41E-05X
0.000E+00 1.5D+03 6.31E-05X
0.000E+00 3.0D+03 7.368-05X
0.000E+00 1.0D+03 8.58E-05X
0.000E+00 4.8D+02 1,00E-0D4X
LINEAR COEFFICIENTS =  3.24T4E-02 +- 8.2D-04
PEAK 1 GOES FROM 1.000E-06 TC 1.000E-05 g MOMENT (J) PERCENT ERROR M(J)/M(J-1)  PERCENT ERROR J
-3 1.5770 X (10%* 31) 2.1E+01
-2 5.9417 X (10%* 25) 1.5E+01 3.7676E-06 3.5E+01 -2
-1 2.4172 X (10%* 20) 9.2E+00 4,0682E-06 2.4E+07 -1
0 1.0604 X (10%* 15) 4, 5E+00 4, 3868E-06 1.4E+01 0
1 4.9951 X (10%* g) 1.6E+00 4,7107E-06 6.1E+00 1
2 2.5115 X (10%* 4) 4, 4E+00 5.0278E-06 6.1E+00 2
3 1.3383 X (10%* -1) 8.0E+00 5.3287E-06 1.2E+01 3
PEAK 2 GOES FROM 1.166E-05 TO 1.000E-04 J MOMENT(J) PERCENT ERROR M(J)/M(J-1)  PERCENT ERROR J
-3 3.5338 X (10%* 29) 1.7E+00
-2 5.2366 X (10%*% 24) 1.6E+00 1.4819E-05 3.3E400 -2
-1 7.9767 X (10%% 19) 3.2E+00 1.5233E-05 4.8E+00 -1
o 1.2513 X (10%* 15) 5.8E+00 1.5687E-05 9.0E+00 0
1 2.0240 X (10%*% 10) 9.3E+00 1.6175E-05 1.5E+01 1
2 3.3777 % (10%*  5) 1. 4E+01 1.6689E-05 2.3E+01 2
3 5.8158 X (10%* 0} 1.9E401 1.7218E-05 3.3E+01 3
MOMENTS OF ENTIRE SOLUTION J MOMENT (J) PERCENT ERROR M(J)/M(J-1)  PERCENT ERROR J
-3 1.6124 X (10%* 31) 2.0E+01
-2 6.4653 X (10%* 25) 1.3E+01 4,0098E-06 3.4E401 -2
-1 3.2149 X (10%* 20) 6.9E+00 4.9725E-06 2,0E401 -1
0 2.3117 X (10%* 15) 3.8E+00 7.1905E-06 1.1E+01 0
1 2.5235 X (10%** 10) 7. 4E+00 1.0916E-05 1.1E+01 1
2 3.6289 X (10%%  5) 1.3E+01 1.4381E-05 2.0E+01 2
3 5.9497 X (10%* ) 1.9E+01 1.6395E-05 3.2E+01 3



